The protein kinase SIK downregulates the polarity protein Par3
نویسندگان
چکیده
The multifunctional cytokine transforming growth factor β (TGFβ) controls homeostasis and disease during embryonic and adult life. TGFβ alters epithelial cell differentiation by inducing epithelial-mesenchymal transition (EMT), which involves downregulation of several cell-cell junctional constituents. Little is understood about the mechanism of tight junction disassembly by TGFβ. We found that one of the newly identified gene targets of TGFβ, encoding the serine/threonine kinase salt-inducible kinase 1 (SIK), controls tight junction dynamics. We provide bioinformatic and biochemical evidence that SIK can potentially phosphorylate the polarity complex protein Par3, an established regulator of tight junction assembly. SIK associates with Par3, and induces degradation of Par3 that can be prevented by proteasomal and lysosomal inhibition or by mutation of Ser885, a putative phosphorylation site on Par3. Functionally, this mechanism impacts on tight junction downregulation. Furthermore, SIK contributes to the loss of epithelial polarity and examination of advanced and invasive human cancers of diverse origin displayed high levels of SIK expression and a corresponding low expression of Par3 protein. High SIK mRNA expression also correlates with lower chance for survival in various carcinomas. In specific human breast cancer samples, aneuploidy of tumor cells best correlated with cytoplasmic SIK distribution, and SIK expression correlated with TGFβ/Smad signaling activity and low or undetectable expression of Par3. Our model suggests that SIK can act directly on the polarity protein Par3 to regulate tight junction assembly.
منابع مشابه
The signaling adaptor GAB1 regulates cell polarity by acting as a PAR protein scaffold.
Cell polarity plays a key role in development and is disrupted in tumors, yet the molecules and mechanisms that regulate polarity remain poorly defined. We found that the scaffolding adaptor GAB1 interacts with two polarity proteins, PAR1 and PAR3. GAB1 binds PAR1 and enhances its kinase activity. GAB1 brings PAR1 and PAR3 into a transient complex, stimulating PAR3 phosphorylation by PAR1. GAB1...
متن کاملNucleotide Exchange Factor ECT2 Interacts with the Polarity Protein Complex Par6/Par3/Protein Kinase C (PKC ) and Regulates PKC Activity
Regulation of cell polarity is an important biological event that governs diverse cell functions such as localization of embryonic determinants and establishment of tissue and organ architecture. The Rho family GTPases and the polarity complex Par6/Par3/atypical protein kinase C (PKC) play a key role in the signaling pathway, but the molecules that regulate upstream signaling are still not know...
متن کاملaPKC Inhibition by Par3 CR3 Flanking Regions Controls Substrate Access and Underpins Apical-Junctional Polarization
Atypical protein kinase C (aPKC) is a key apical-basal polarity determinant and Par complex component. It is recruited by Par3/Baz (Bazooka in Drosophila) into epithelial apical domains through high-affinity interaction. Paradoxically, aPKC also phosphorylates Par3/Baz, provoking its relocalization to adherens junctions (AJs). We show that Par3 conserved region 3 (CR3) forms a tight inhibitory ...
متن کاملTyrosine phosphorylated Par3 regulates epithelial tight junction assembly promoted by EGFR signaling.
The conserved polarity complex, comprising the partitioning-defective (Par) proteins Par3 and Par6, and the atypical protein kinase C, functions in various cell-polarization events and asymmetric cell divisions. However, little is known about whether and how external stimuli-induced signals may regulate Par3 function in epithelial cell polarity. Here, we found that Par3 was tyrosine phosphoryla...
متن کاملElevated expression of Par3 promotes prostate cancer metastasis by forming a Par3/aPKC/KIBRA complex and inactivating the hippo pathway
BACKGROUND Prostate cancer (PCa) is one of the most frequent tumors and leading cause of cancer deaths among males worldwide. The majority of deaths are due to recurrence and subsequent development of the metastatic cancer. Although loss or dislocalization of polarity proteins has been implicated in embryogenesis deficiency and tumorigenesis, association of polarity protein expression levels wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2018